If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-10=6
We move all terms to the left:
2k^2-10-(6)=0
We add all the numbers together, and all the variables
2k^2-16=0
a = 2; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·2·(-16)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*2}=\frac{0-8\sqrt{2}}{4} =-\frac{8\sqrt{2}}{4} =-2\sqrt{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*2}=\frac{0+8\sqrt{2}}{4} =\frac{8\sqrt{2}}{4} =2\sqrt{2} $
| 16-15y=22 | | 4^5-2x=1/16 | | 1/4(x−16)=7 | | -27-6n=-(7-4n) | | 2p^2-9=-95 | | 6x+3x-7x+2x=12 | | -7-8c=-9+2 | | 9-2p^2=-95 | | 8-x=8(2x-1) | | 18=6-3r | | 5k-3k-k+2k=3 | | -8s+10=2s | | 9v+6+7v+4+90=180 | | 6t+5t-18t=19 | | 4n-n+4n+n-7n=9 | | 12+9=3a | | 4s+s-4s=5 | | k^2=15^2+25^2 | | 19.1p-11.52=20p | | 2x+3/5(4x+16)=7 | | x.39=2x-5(-3x+16) | | 14y-22-5y=4 | | -8=a-2 | | 12u=11u+14 | | (12-0.3x)(5-0.1x)=0 | | 14j-13j-j+j=18 | | x/x-3=2x-5/2x+1 | | 9y+5=58 | | 32/y=4.Y= | | -1-4n=-19-6n | | 30y3+10y-1=0 | | Y=3t^2+12t+36 |